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Example: catenoid

Minimal surfaces locally minimize area. Equivalently H = 0.
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Figure: Credit: M. Weber's Minimal surfaces gallery
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Example: Clifford torus

® An equator S? C S3 is the simplest example of a minimal
surface in a sphere.
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Example: Clifford torus

® An equator S? C S3 is the simplest example of a minimal
surface in a sphere.

e Clifford torus is a minimal torus in S3 ¢ C2.

On St x St it is parametrized as
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Free boundary minimal surfaces in B"*!

A minimal surface N C B"t! is called free boundary minimal
surface (FBMS) if ON € S" and N L S™
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Free boundary minimal surfaces in B"*!

A minimal surface N C B"*1 is called free boundary minimal
surface (FBMS) if ON € S" and N L S™

Figure: Equatorial disk Figure: Critical catenoid

Pictures by Mario Schulz: https://mbschulz.github.io
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Classical problems about minimal surfaces in S3
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Classical problems about minimal surfaces in S3

1. Existence: for any genus v > 0 there exists an embedded
minimal surface in S® of genus 7. Resolved by Lawson in 1970

2. ”"Willmore conjecture”: Clifford torus has the smallest
possible area among non-equatorial minimal surfaces in S”.
Resolved by Marques-Neves in 2012 for n =3

3. Lawson conjecture: Clifford torus is the only embedded
minimal torus in S3. Resolved by Brendle in 2012
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Laplace-Beltrami operator

Let (M, g) be a closed Riemannian surface.
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Laplace-Beltrami operator

Let (M, g) be a closed Riemannian surface. The Laplace-Beltrami
operator is defined by

1 9 of
- </ U
Agf ,—‘g‘ 8Xi ( | a J)

where gj; is the Riemannian metric, g are the components of the
matrix inverse to gj and |g| = det g.

9/30



Minimal surfaces via Laplacian

e Minimal surfaces in R"t1:

10/30



Minimal surfaces via Laplacian
e Minimal surfaces in R"t1:

M c R™1 is minimal <= Apx = 0.

10/30



Minimal surfaces via Laplacian
e Minimal surfaces in R"t1:

M c R™1 is minimal <= Apx = 0.

e Minimal surfaces in S” ¢ R"*1:

10/30



Minimal surfaces via Laplacian
e Minimal surfaces in R"t1:

M c R™1 is minimal <= Apx = 0.

e Minimal surfaces in S” ¢ R"*1:

M C S™ is minimal <= AyX = 2X.

10/30



Minimal surfaces via Laplacian
e Minimal surfaces in R"t1:

M c R™1 is minimal <= Apx = 0.

e Minimal surfaces in S” ¢ R"*1:

M C S™ is minimal <= AyX = 2X.

® Free boundary minimal surfaces in B"*1;

10/30



Minimal surfaces via Laplacian

e Minimal surfaces in R"t1:

M c R™1 is minimal <= Apx = 0.

e Minimal surfaces in S” ¢ R"*1:

M C S™ is minimal <= AyX = 2X.

® Free boundary minimal surfaces in B"*1;

AN)? = 0;

-

N c Bt isaFBMS<:>{ B
X = X.
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Eigenvalues of the Laplacian

Consider the eigenvalue problem on (M, g):
Agf = \f
The spectrum is discrete,

0=X(M,g) < M(M,g) < Xo(M,g) <+ +oo

Set

(M, g) = (M, g) Area(M, g).
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Geometric optimization of eigenvalues

Consider A\ (M, g) as a functional on the space R of Riemannian
metrics on M.
g— M(M, g).
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Geometric optimization of eigenvalues

Consider A\ (M, g) as a functional on the space R of Riemannian
metrics on M.
g— M(M, g).

We are interested in the following quantity

(M) = sup A (M, g).
g

Korevaar (1993): Ax(M) < oc.
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Critical metrics for S\k(M,g)

Recall that

M C S" is minimal <= AyX = 2X.

Nadirashvili 1996; El Soufi, llias 2008:

Critical metrics }—{ Minimal surfaces in S”
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Overview of the results for \;

Hersch (1970): A1(S?) = 87 and the maximum is achieved on
the standard metric on S2.

Li-Yau (1982): A;(RP?) = 127 and the maximum is achieved
on the standard metric on RIP2.

Nadirashvili (1996): A;(T2) 8r°
: 1 = —
V3

and the maximum is achieved on the
flat equilateral torus.
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Examples: S? and RP?

e The eigenfunctions of S C R3 are the restrictions of
homogeneous harmonic polynomials p on R3.
Eigenvalue is deg p(deg p + 1)

degree 1: x,y,z

degree 2: xy, yz, xz,x°

Y R
® S?: the identity map S? — S? is an isometric minimal
immersion.

e RP2: Veronese immersion v: RP? — S*

V3 1
V(vavz) = (Xy,XZ,yZ,2(X2 _}/2)75( 2"‘)/2) _22
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Overview of the results for \;

® A;(M) is additionally known for Klein bottle and genus 2
surface.

® Petrides 2014, Matthiesen-Siffert 2019: there exists a smooth
maximal metric for A;(M).

e K.-Stern, 2020: any "reasonable” maximal metric has to be
smooth.
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Steklov problem on surfaces
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Steklov problem on surfaces

(N, g) — compact surface with boundary.

Agu=0 in N;
Opu =ou on ON.

O:UO(Nvg) < Jl(Nvg) < 02(Nag) < 0-3(N,g)"' /‘+OO

The goal is to find

T1(N) = supa1(N, g) = supoi1(N, g)Length, (ON);
g g
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Example: unit disk

Consider N = D the unit disk.
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Example: unit disk

Consider N = DD the unit disk.
Eigenfunctions are

r"sinnp, n=12...

r"cosnp, n=0,1,2...

Eigenvalues are
0,1,1,2,2,3,3,...
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Theorem of Weinstock

Theorem (Weinstock 1954) If N is simply connected, then
Y (N) =2m7.

The equality is achieved for the unit disk D.
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Critical metrics for ax(M, g)

Recall that

AnK =0
N c Bt isaFBMS:){ =0
OpX = X.
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Critical metrics for ax(M, g)

Recall that

N c B"t is a FBMS «— {

Fraser-Schoen (2014):

Critical metrics Free boundary minimal
ritical metri .
surfaces in B"1
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The work of Fraser-Schoen

e If N has genus 0, then the multiplicity of o7 is at most 3 and,
therefore, FBMS is in B3.
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The work of Fraser-Schoen

If N has genus 0, then the multiplicity of o1 is at most 3 and,
therefore, FBMS is in B3.

If N has genus 0 and the maximizer exists, then the
corresponding FBMS is embedded.

Y 1(A) is achieved on a critical catenoid;

¥ 1(M) is achieved on a critical Mébius band in B*.
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Examples

All the following pictures are by Mario Schulz:
https://mbschulz.github.io.
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Existence and numerics

® Matthiesen-Petrides (2020): For any N, the quantity X1(N) is
achieved on a smooth metric
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Existence and numerics

® Matthiesen-Petrides (2020): For any N, the quantity X1(N) is
achieved on a smooth metric (gives existence for genus 0 )

e Kao-Osting-Oudet (2020): numerics for low number of
boundary components:

Figure: Tetrahedron Figure: Octahedron Figure: Skew cube
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More pictures
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Steklov — Laplace

® [et M be a closed surface and Ny be M with k holes.
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Steklov — Laplace

® [et M be a closed surface and Ny be M with k holes.
e K.-Stern, Girouard-Lagacé (2020):

k“—>moo Zl(Nk) = /\1(/\/’)

e K.-Stern (2021):
The corresponding free boundary minimal surfaces Hausdorff
converge to the corresponding minimal surface in the sphere

and

The boundary measures converge to twice the surface
measure.
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Steklov — Laplace

K.-Stern (2021):
® There exists ¢ = ¢(M) > 0 such that

log k
k

/\1(/\/1) — Zl(Nk) 2 C
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Steklov — Laplace

K.-Stern (2021):
® There exists ¢ = ¢(M) > 0 such that

log k
k

/\1(/\/1) — Zl(Nk) 2 C

o If M =S? RP? T? K, then there is C(M) > 0

log k
k

AM(M) =X (M) < C
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Meta-question

For which (eigenvalue) functionals one has

. Natural geo-
Extremal metrics - -
metric objects
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Meta-question

For which (eigenvalue) functionals one has
. Natural geo-
Extremal metrics - ]
metric objects

Very unexplored with many accessible problems.
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Some open questions

. What happens for 1-dimensional objects? Specifically for
quantum graphs?

. Geometry of minimal surfaces, e.g.

i
klamoo log k

(A (M) — Z1(Nk)) =7

. Many open questions for higher dimensional manifolds.
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Higher eigenvalues: "bubbling” phenomenon

¢ Nadirashvili (2002), Petrides (2014):
No(S?) = 2A1(S?) = 167.

WY

e Nadirashvili-Sire (2017): A3(S?) = 24r.

¢ Nadirashvili-Penskoi (2018):
A2(RP?) = A;(RP?) + A1(S?) = 207
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Higher eigenvalues: new results

¢ K.-Nadirashvili-Penskoi-Polterovich (2017):

Ak(S?) = 8k
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Higher eigenvalues: new results

¢ K.-Nadirashvili-Penskoi-Polterovich (2017):

Ak(S?) = 8k

* K. (2019):

Ae(RP?) = 47 (2k + 1)
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