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Minimal surfaces

Figure: Credit: https://www.soapbubble.dk/en
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Example: catenoid

Minimal surfaces locally minimize area. Equivalently H = 0.

Figure: Credit: M. Weber’s Minimal surfaces gallery
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Example: Clifford torus

• An equator S2 ⊂ S3 is the simplest example of a minimal
surface in a sphere.

• Clifford torus is a minimal torus in S3 ⊂ C2.

On S1 × S1 it is parametrized as

1√
2

(
e iφ, e iθ

)
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Free boundary minimal surfaces in Bn+1

A minimal surface N ⊂ Bn+1 is called free boundary minimal
surface (FBMS) if ∂N ⊂ Sn and N ⊥ Sn:

Figure: Equatorial disk Figure: Critical catenoid

Pictures by Mario Schulz: https://mbschulz.github.io
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Classical problems about minimal surfaces in S3

1. Existence: for any genus γ > 0 there exists an embedded
minimal surface in S3 of genus γ. Resolved by Lawson in 1970

2. ”Willmore conjecture”: Clifford torus has the smallest
possible area among non-equatorial minimal surfaces in Sn.
Resolved by Marques-Neves in 2012 for n = 3

3. Lawson conjecture: Clifford torus is the only embedded
minimal torus in S3. Resolved by Brendle in 2012
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Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology.

Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3.

Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn.

Open.

8 / 30



Counterparts for FBMS in B3

1. Existence: for any genus γ > 0 and any number of boundary
components b > 1 there exists an embedded FBMS in B3 of
that topology. Only partial results, e.g. γ = 0.

2. ”Willmore conjecture”: Critical catenoid has the smallest
possible area among non-equatorial FBMS in B3. Open.

3. Catenoid conjecture: Critical catenoid is the only embedded
free boundary minimal annulus in Bn. Open.

8 / 30



Laplace-Beltrami operator

Let (M, g) be a closed Riemannian surface.

The Laplace-Beltrami
operator is defined by

∆g f = − 1√
|g |

∂

∂x i

(√
|g |g ij ∂f

∂x j

)
,

where gij is the Riemannian metric, g ij are the components of the
matrix inverse to gij and |g | = det g .
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Minimal surfaces via Laplacian

• Minimal surfaces in Rn+1:

M ⊂ Rn+1 is minimal⇐⇒ ∆M~x = 0.

• Minimal surfaces in Sn ⊂ Rn+1:

M ⊂ Sn is minimal⇐⇒ ∆M~x = 2~x .

• Free boundary minimal surfaces in Bn+1:

N ⊂ Bn+1 is a FBMS⇐⇒

{
∆N~x = 0;

∂n~x = ~x .
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Eigenvalues of the Laplacian

Consider the eigenvalue problem on (M, g):

∆g f = λf

The spectrum is discrete,

0 = λ0(M, g) < λ1(M, g) 6 λ2(M, g) 6 · · · ↗ +∞

Set
λ̄k(M, g) = λk(M, g) Area(M, g).
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Geometric optimization of eigenvalues

Consider λ̄k(M, g) as a functional on the space R of Riemannian
metrics on M.

g 7−→ λ̄k(M, g).

We are interested in the following quantity

Λk(M) = sup
g
λ̄k(M, g).

Korevaar (1993): Λk(M) <∞.
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Critical metrics for λ̄k(M , g)

Recall that

M ⊂ Sn is minimal⇐⇒ ∆M~x = 2~x .

Nadirashvili 1996; El Soufi, Ilias 2008:

Critical metrics Minimal surfaces in Sn
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Overview of the results for λ̄1

• Hersch (1970): Λ1(S2) = 8π and the maximum is achieved on
the standard metric on S2.

• Li–Yau (1982): Λ1(RP2) = 12π and the maximum is achieved
on the standard metric on RP2.
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• Nadirashvili (1996): Λ1(T2) =
8π2√

3
and the maximum is achieved on the
flat equilateral torus.



Examples: S2 and RP2

• The eigenfunctions of S2 ⊂ R3 are the restrictions of
homogeneous harmonic polynomials p on R3.
Eigenvalue is deg p(deg p + 1)

degree 1: x , y , z
degree 2: xy , yz , xz , x2 − y2, x2 − z2

• S2: the identity map S2 → S2 is an isometric minimal
immersion.

• RP2: Veronese immersion v : RP2 → S4

v(x , y , z) =

(
xy , xz , yz ,

√
3

2
(x2 − y2),

1

2
(x2 + y2)− z2

)
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Overview of the results for λ̄1

• Λ1(M) is additionally known for Klein bottle and genus 2
surface.

• Petrides 2014, Matthiesen-Siffert 2019: there exists a smooth
maximal metric for Λ1(M).

• K.-Stern, 2020: any ”reasonable” maximal metric has to be
smooth.
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Steklov problem on surfaces

(N, g) – compact surface with boundary.

{
∆gu = 0 in N;

∂nu = σu on ∂N.

0 = σ0(N, g) < σ1(N, g) 6 σ2(N, g) 6 σ3(N, g) . . .↗ +∞

The goal is to find

Σ1(N) = sup
g
σ̄1(N, g) = sup

g
σ1(N, g)Lengthg (∂N);
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Example: unit disk

Consider N = D the unit disk.

Eigenfunctions are

rn sin nϕ, n = 1, 2, . . .

rn cos nϕ, n = 0, 1, 2 . . .

Eigenvalues are
0, 1, 1, 2, 2, 3, 3, . . .
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Theorem of Weinstock

Theorem (Weinstock 1954) If N is simply connected, then

Σ1(N) = 2π.

The equality is achieved for the unit disk D.
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Critical metrics for σ̄k(M , g)

Recall that

N ⊂ Bn+1 is a FBMS⇐⇒

{
∆N~x = 0;

∂n~x = ~x .

Fraser-Schoen (2014):

Critical metrics
Free boundary minimal

surfaces in Bn+1
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The work of Fraser-Schoen

• If N has genus 0, then the multiplicity of σ1 is at most 3 and,
therefore, FBMS is in B3.

• If N has genus 0 and the maximizer exists, then the
corresponding FBMS is embedded.

• Σ1(A) is achieved on a critical catenoid;

• Σ1(M) is achieved on a critical Möbius band in B4.
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Examples

All the following pictures are by Mario Schulz:
https://mbschulz.github.io.

Figure: Equatorial disk Figure: Critical catenoid Figure: TBN
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Existence and numerics

• Matthiesen-Petrides (2020): For any N, the quantity Σ1(N) is
achieved on a smooth metric

(gives existence for genus 0 )

• Kao-Osting-Oudet (2020): numerics for low number of
boundary components:

Figure: Tetrahedron Figure: Octahedron Figure: Skew cube
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More pictures

Figure: 20 bc Figure: 32 bc Figure: 61 bc
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Steklov −→ Laplace

• Let M be a closed surface and Nk be M with k holes.

• K.-Stern, Girouard-Lagacé (2020):

lim
k→∞

Σ1(Nk) = Λ1(M).

• K.-Stern (2021):
The corresponding free boundary minimal surfaces Hausdorff
converge to the corresponding minimal surface in the sphere

and

The boundary measures converge to twice the surface
measure.
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Steklov −→ Laplace

K.-Stern (2021):

• There exists c = c(M) > 0 such that

Λ1(M)− Σ1(Nk) > c
log k

k

• If M = S2,RP2,T2,K, then there is C (M) > 0

Λ1(M)− Σ1(Nk) 6 C
log k

k
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Meta-question

For which (eigenvalue) functionals one has

Extremal metrics
Natural geo-

metric objects

Very unexplored with many accessible problems.
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Some open questions

1. What happens for 1-dimensional objects? Specifically for
quantum graphs?

2. Geometry of minimal surfaces, e.g.

lim
k→∞

k

log k
(Λ1(M)− Σ1(Nk)) =?

3. Many open questions for higher dimensional manifolds.
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Higher eigenvalues: ”bubbling” phenomenon

• Nadirashvili (2002), Petrides (2014):
Λ2(S2) = 2Λ1(S2) = 16π.

• Nadirashvili–Sire (2017): Λ3(S2) = 24π.

• Nadirashvili–Penskoi (2018):
Λ2(RP2) = Λ1(RP2) + Λ1(S2) = 20π.
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Higher eigenvalues: new results

• K.–Nadirashvili–Penskoi–Polterovich (2017):

Λk(S2) = 8πk

• K. (2019):

Λk(RP2) = 4π(2k + 1)
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